
The PrimeGame Revolutions
A cloud-based collaborative environment for teaching introductory programming

Jens Dietrich
Massey University
Palmerston North,

New Zealand
j.b.dietrich@massey.ac.nz

Johannes Tandler
Technical University

of Dresden
Dresden, Germany
johannes@jtdl.de

Li Sui
Massey University
Palmerston North,

New Zealand
leesui0207@gmail.com

Manfred Meyer
Westphalian University of

Applied Sciences
Bocholt, Germany

manfred.meyer@w-hs.de

Abstract—The PrimeGame is an established mathematical pro-
gramming game that has been used successfully in undergraduate
computer science teaching since 2003. To meet the increasing
demand for innovative programming tools in undergraduate
tertiary and secondary education, we have created SoGaCo, a
novel platform to deliver the PrimeGame and similar games to
a wide audience via standard web browsers. SoGaCo is designed
to have a very low total cost of ownership. This is achieved by
enabling teachers to provision a customised collaborative develop-
ment environment on commodity cloud computing infrastructure.
Amongst the unique features of the platform are its social
networking features and support for polyglot programming.

In this paper, we describe the requirements for this system,
its design and implementation. We focus on how the scalability
and security challenges of an open web-based development
environment are addressed. This includes a discussion of the
sandboxing and verification techniques we have developed in
order to safeguard server-side code execution on the Java Virtual
Machine.

I. INTRODUCTION

There are widely acknowledged shortcomings in computer
science education that is often seen as unable to satisfy the
needs of employers, both in terms of the quality and the quan-
tity of the graduates produced. The use of gamification seems
to be a viable approach to improve the experience students
have, and can improve student engagement and educational
outcomes [13], [15], [18].

On the other hand, educators face additional challenges:
budgets to acquire new systems are tied, and there is a general
expectation that programming tools can be made available for
free or at a very low cost. Moreover, teachers at highschool
level have very limited technical support and often no access
to servers to deploy custom educational packages. This leads
in many cases to a preference for cloud-based systems that
have a low overall total costs of ownership.

In this paper, we describe our experience in building such a
platform. We focus on the technical problems we had to solve
to achieve a sufficient level of usability, stability, security and
scalability. The system described is SoGaCo (social gaming
and coding). SoGaCo is a platform that supports content mod-
ules build around simple mathematical board games. Students
write bots that play those games on their behalf, and share
those bots to play against peers or assessment / benchmarking
bots.

While we have implemented several different games with
SoGaCo1, our discussion focuses on our experience with one
particular game, the PrimeGame [12], [11]. We chose the
PrimeGame for the following reasons: (1) The PrimeGame has
an extremely simple programming model that makes it suitable
for entry level programming for both highschool and first year
university level teaching. (2) There is a simple hierarchy of
possible strategies with increasing complexity and increasing
bot strength. This increase requires students to explore new
features of the programming language used (conditionals,
loops, container data structures). (3) The PrimeGame has been
used successfully in tertiary education before.

The rest of the paper is organised as follows: we review
related work first, followed by a detailed discussion of the
design, security and scalability aspects and a brief presentation
of the game user interface. A public installation of the game
is available at http://sogaco.massey.ac.nz/.

II. RELATED WORK

Several authors have reported the positive impact gamifica-
tion can have on educational outcomes [13], [15], [18]. The
PrimeGame was first used in 2003 at the University of Applied
Sciences Gelsenkirchen and since 2009 at the Polytechnic of
Namibia and some other institutions in Germany [12]. Since
then, successful annual and bi-annual competitions took place,
with good participation rates, although the overall success-rate
depended on the cultural background of students and required
careful balancing between the competitive and collaborative
aspects of the game. In [11], the authors presented a version
of the PrimeGame based on a client-server architecture but
using a proprietary Java client.

There is large body of research on educational program-
ming environments. For space reasons, we only discuss the
projects that have directly inspired our work. Greenfoot [8]
is a desktop-based development environment where students
produce animations by programming actors in Java. Greenfoot
can be seen as a turn-based one-player game environment.
It supports some social interaction via an online gallery.
GreenFoot’s focus is on teaching OOP concepts, following

1PrimeGame, Mancala, Othello, 5 in a Row



the “objects first” philosophy. We have used GreenFoot suc-
cessfully for years in a 200-level object-oriented programming
course at Massey University. Robocode [14] is a turn-based
multiplayer game. While robocode is client-based, it supports
collaboration through battle simulators that can load robots
developed by other players. Scratch [16] is an online envi-
ronment for creating simple animations and games. It uses its
own visual language, and targets a younger audience. For a
more detailed comparison between scratch, greenfoot and the
related alice environment, the reader is referred to [17].

There are a number of web-based development environ-
ments that have inspired our work, in particular the cloud9
IDE2 and the Python Tutor [6].

III. DESIGN

A. Requirements

The design of SoGaCo is based on the following require-
ments elicited from interviews with teachers.
REQ1 Programming Language Support. There have been sig-

nificant changes in the use of programming languages
for highschool and entry-level undergraduate computer
science courses in recent years, with Python and Java
being the most widely used languages at the moment
[7]. It is very likely that there will be more changes.
Therefore, our platform is to support multiple languages.

REQ2 Cloud deployability. Cloud-based deployment is nec-
essary to build and deliver a platform that provides low
total cost of ownership for users. In particular, with this
approach on-site installation can be avoided.

REQ3 Security. Web-based deployment means that code is
submitted to the server for compilation and execution.
This makes the system extremely vulnerable to injection
attacks, including “unintentional” attacks caused by care-
less programming. This must be addressed.

REQ4 Multiple Games. It cannot be expected that a single
game can satisfy the needs of different courses and
student cohorts with diverse educational and cultural
backgrounds. Therefore, the platform must be separated
from the actual content (the games).

REQ5 Authentication. Whenever possible, providers should
not have the responsibility to manage user account in-
formation. Instead, existing user accounts (in-house or
social) should be re-used.

B. Abstractions

The design of the system has to address the requirements
discussed above. At the core of the design are some abstrac-
tions that describe services or subsystems. While implemen-
tations of these abstractions are necessary to deploy an actual
instance of SoGaCo, there is a significant amount of freedom
how these abstractions are provided.

One of the main design decisions was to use the Java
Virtual Machine (JVM) [9] as a platform. The JVM itself
provides core abstractions, for instance the ability to execute

2https://c9.io/

code written in different languages (REQ1), including explicit
support for Java and Python. The JVM with its ecosystem
of high quality low cost application servers is also a good
platform for cloud-based deployment (REQ2), and libraries
like Shiro provide the abstractions for third-party in-house
(LDAP) and social (OpenAuth) authentication (REQ5).

C. Services

The system is designed around a set of HTTP services
following the REST approach [3]. Data transferred between
client and server is generally JSON-encoded. State is avoided
whenever possible, however, HTTP sessions are used to track
user information such as authentication status. This is imposed
by the Shiro framework3 used to provide authentication ser-
vices. This design supports the implementation of alternative
clients, such as mobile applications. Core services are listed
in Table I.

TABLE I
CORE SERVICES

URL Pattern Method Description
/bots/ POST build and save a new bot
/bots/<botId> PUT build and save an existing bot
/delete/<botId> DELETE delete a bot
/bots-src/
<botId>

GET fetch the source code of a bot

/bot-metadata/
<botId>

GET fetch the meta data for a bot

/userbots/
<userId>

GET get the bot ids of the bots owned
by a user

/creategame_b2b POST create a bot against bot game
/games/<gameId> GET fetch a recorded game
/template/
<language>

GET get the bot code template for the
respective language

D. Build Process

At the core of SoGaCo is a builder. The purpose of the
builder is to turn source code into bot objects that can partic-
ipate in games, while enforcing a strict security regime and
giving detailed feedback to users when the build process fails.
Providing support for multiple languages while addressing the
unique security issues of cloud-based systems is non-trivial.
Java code can be compiled programmatically through the
Java Compiler interface javax.tools.JavaCompiler.
However, code written in many other languages can only be
interpreted, either via proprietary interfaces or via the JSR223
[5] standard interface. The build process we devised consists
of a number of operations that are performed sequentially.

For compiled languages like Java, the following steps are
performed.

COMPILE Source code is compiled into byte code using the
respective language compiler.

BYTE_CHECK The generated byte code is checked for vio-
lations of security rules. Checks are performed on a byte
code model generated with ASM [2].

3http://shiro.apache.org/



BYTE_INSTR The generated byte code is instrumented. Code
to monitor bots for resource usage, to react to timeout
requests and to generate trace statements is injected.

LOADING The byte code is used to load a Java class.
INSTANTIATION The class is instantiated.
TESTING A JUnit [1] acceptance test suite is executed to

check the semantics and the quality of service character-
istics of the bot. In particular, the correctness of generated
game moves (post conditions) and resource allocation
(timeouts, memory usage) are tested. A custom JUnit
runner that allows to inject the object under test is used.

For interpreted languages like Python, the following steps
are performed:
SRC_CHECK Source code is checked for violations of secu-

rity rules. Usually, source code is parsed into an abstract
syntax tree to perform this step.

SRC_INSTR Source code is instrumented. Code to monitor
bots for resource usage, enforce timeouts and generate
trace statements is injected. Usually, source code is parsed
into an abstract syntax tree to perform this step.

INSTANTIATION A Java wrapper object is created. Inter-
nally, this object uses the interpreter and the submitted
source code to interpret method invocations during game
play.

TESTING A JUnit acceptance test suite is executed to check
the bot. See above for details.

IV. SECURITY

As mentioned before, the security of any system that allows
the execution of code submitted from an open web-client on
the server is critical. We briefly describe the main challenges,
and how they are addressed.

A. Usage of critical system functionality

Bots should not have access to parts of the platform
API that would allow them to create or manipulate critical
resources. In particular, this includes access to I/O classes,
java.lang.System and the threading API. Access to the
reflection API is also prohibited as this could be used to bypass
verification. This is enforced via API white lists during the
static analysis steps in the build process. If access to APIs not
on the white list is detected, a descriptive error is sent back to
the client. On the client, a marker pointing to the respective
source code and displaying the error message is generated.

This approach allows us to detect problems early at build
time and communicate them back to the user. This is an
inherent advantage over the existing class loader / security
manager-based sandboxing techniques built into Java and used
for instance in the applet API. Here, security violations will
only be detected late, at runtime.

B. Responsiveness to Timeouts

For performance as well as for security reasons, bots are ex-
ecuted in (pooled) threads using the Java executor framework.
This allows some thread-based sandboxing. In particularly,

long-running tasks can be interrupted, and therefore certain
types of denial-of-service attacks can be prevented.

When a task is submitted, a timeout can be set that will
interrupt a task that runs too long. However, since the Java
threading model is collaborative [4], a task cannot be directly
terminated. Instead, the collaboration of a task is required to
self-terminate. Since students cannot be expected to support
this in their code by frequently consulting the interrupted state
and terminating computation when it is set to true, the code
for these checks must be transparently injected. This is done
during the instrumentation phase of the build process.

C. Memory Allocation Quota

The injection-based monitoring described above can also be
used to enforce memory allocation limits. For each method
invocation in bot code, a call to a monitoring interface is
injected. With this monitor, method invocation quota can be
enforced, and therefore stack overflow errors can be prevented.
We can also control the heap memory allocated from the
current thread at this point 4, and force the bots to terminate
if a certain quota is exceeded.

D. Security for Python User Code

Unfortunately, the approach described in sections IV-B and
IV-C can not be easily ported to Jython (i.e., Python on the
JVM). For Jython, we have used the built-in Jython debugger
utility to wrap and execute Python code. The debugger can
then make the equivalent calls to the monitoring interface that
checks the interrupted state and the heap memory allocation.

V. SCALABILITY

A. Cache Design

The sophisticated build process with several additional
verification steps has a significant impact on performance. In
particular, when a compiled language like Java is used, new
classes are created and loaded at the end of each successful
build. This process has to be carefully managed in order
to avoid memory leaks5. But even when memory leaks are
avoided, garbage collecting classloaders is potentially slow,
depending on the JVM being used.

While caching provides a possible solution, in particular
with respective to frequently used built-in “benchmarking
bots”, caching bots directly is not possible or practical for a
number of reasons. The same bot might participate in multiple
games running in multiple threads at the same time. This
becomes a problem if bots have state. For educational reasons,
we do not want to restrict the use of fields in bots. But even
for stateless bots there is a problem, as we add state through
the instrumentation and the use of controllers. While the use
of ThreadLocal could provide a solution to the problem,
we opted to use unique BotFactories for each bot that
is being built. These factories consist of class / class loader

4Note that this requires the presence of the
com.sun.management.ThreadMXBean MBean that is available
in Oracles JDK, but not in the OpenJDK as of version 8u40

5Manifested in java.lang.OutOfMemory: PermGen errors)



combination that can be safely cached, and unique short-lived
bot instances can be created for each game that is being played.
Therefore, all bots are automatically thread-local. The only
drawback is that “static state” (static fields in Java) cannot be
permitted.

While this works well for compiled languages, a different
strategy must be chosen for interpreted languages like Python.
In this case, we use the pre-compilation mechanism that is part
of JSR223 [5] to create cachable artefacts.

B. Cache Implementation

The cache is implemented as a concurrent map with a maxi-
mum size and automatic eviction of entries after a configurable
maximum lifetime. For this purpose, the cache utility class
from the Google guava library6 is used.

C. Experimental Validation

To assess the impact of instrumentation and caching on
performance, we conducted a number of experiments. For
this purpose, we created five bots implementing the game
strategies discussed in [12]. First, we build all bots 1000 times
to establish whether instrumentation has an impact on build
time. We found that this is not the case, instrumentation adds
less than 10% build time overhead. Then we instrumented
the bots and execute 500 games of the bots playing (other
instances of) themselves to measure runtime overhead. Table
II shows the impact of the instrumentation of Java bots on
runtime performance.

Note that the different strategies correspond to increasing
code complexity in the sense of cyclomatic complexity [10].
As described above, the monitoring utility is used to check
for interrupted state and heap memory allocation. The latter
is relatively expensive, and it is reasonable to perform these
checks only after a certain number of invocations. The depen-
dency of the runtime on these check intervals is also reported
in Table II, columns 3–57.

TABLE II
JAVA BOT PERFORMANCE DEPENDING ON INSTRUMENTATION

program run time (ms)
no 1 10 100

anxious 63 67 64 59
greedy 33 36 33 30
prime number 50 573 132 86
no factors left 64 598 149 77
best advantage 254 2021 581 393

For the simple bots, there is almost no measurable runtime
performance penalty caused by instrumentation either. How-
ever, the situation is different for the more complex bots, where
instrumentation increases runtime by a factor of up to 8 for the
best advantage strategy. This can be managed by increasing the
interval size when memory consumption and interrupt status
are checked.

6https://code.google.com/p/guava-libraries/
7E.g., the 10 in column 4, row 2 means that the interrupted state and the

heap space allocated are checked after every 10 method invocations

Table III reports the equivalent data for bots written in
Python. This shows some unexpected results – instrumentation
actually speeds up execution! This is due to the different, faster
dispatch method used internally by the Jython debugger.

TABLE III
PYTHON BOT PERFORMANCE DEPENDING ON INSTRUMENTATION

program run time (ms)
no 1 10 100

anxious 130 244 243 253
greedy 75 258 243 267
prime number 82 267 295 306
no factors left 77 287 321 309
best advantage 13139 812 746 703

TABLE IV
JAVA AND PYTHON BOT PERFORMANCE DEPENDING ON CACHING

language without cache with cache
java 7302 163
python 5240 776

We also assessed the impact caching has using the following
experimental setup. We used a round robin tournament for the
Java and Python versions of the bots from [12], and measured
the runtime of 5 tournaments with and without cache. The
results are reported in Table IV. It is apparent that caching can
significantly improve performance, and is crucial for achieving
sufficient throughput.

VI. USER INTERFACE

Figures 1 – 2 show the browser-based user interface. The
editor (Figure 1) provides a simple web-based IDE based on
the widely used ACE component8. The number of available
functions has been minimised to retain the simplicity neces-
sary for educational programming environments. The editor
supports syntax highlighting and formatting. Support for auto-
completion is planned but not yet available.

Note the sharing feature in the main menu. This flags the
bot as shared, and produces a URL that can be shared on social
networks to invite other users to play against this bot.

Bots are submitted to the server for storing and building.
As discussed above, the server processes the bot in a build
pipeline. Errors that occur at the various stages are displayed
to the user in the console panel underneath the code editor.
Also, a marker is set to highlight the critical code causing
the problem. This includes compilation errors. In addition,
violations for the several verification rules are displayed.
An example can also be seen in Figure 1. Here the user
has attempted to store a bot that forces the JVM to exit
(System.exit(0)). This is discovered during the static
bytecode verification step (BYTE_CHECK), the respective
error message is displayed and the line of code is highlighted.

Games can be played in the test environment shown in
Figure 2. While the code editor is generic, the test environment
is game specific. The games are executed on the server, the

8http://ace.c9.io/



Fig. 1. SoGaCo code editor reporting a verification error

Fig. 2. SoGaCo PrimeGame test environment

results are recorded, (JSON-) encoded and returned to the
client for animated replay. The animation controls are on the
right side of the screen. The left side contains a list of bots, two
bots must be selected from the list to play a game. These bots
are colour-coded upon selection (red and blue, respectively).
Note that bots shared by other users can be looked up and
selected as well. When a shared bot URL is loaded, the test
page is loaded with the shared bot preselected as opponent.

In the game shown in Figure 2, a simple cautious bot plays
against a more sophisticated (blue) bot that plays the largest
prime number available.

VII. CONCLUSION

We have presented SoGaCo, a browser-based educational
environment for teaching programming and algorithms and
data structures. While we have not yet systematically evaluated
SoGaCo, evidence from end user testing with a group of 25
students suggests that this environment can promote engage-
ment and participation. More work on validation is planned
with several universities and highschools in the near future.

There are several technical features we plan to integrate,
such as traceability and visualisation of code execution, similar

to the respective feature of the Python tutor [6], the provision
of a console for bots, support for code autocompletion, and
support to organise tournaments.

REFERENCES

[1] Kent Beck and Erich Gamma. Test infected: Programmers love writing
tests. Java Report, 3(7):37–50, 1998.

[2] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code
manipulation tool to implement adaptable systems. Adaptable and
extensible component systems, 30, 2002.

[3] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,
Irvine, 2000.

[4] Brian Goetz and Tim Peierls. Java concurrency in practice. Pearson
Education, 2006.

[5] Mike Grogan. JSR-223 Scripting for the Java TM Platform. Final Draft
Specification, version, 1, 2006.

[6] Philip Guo. Online Python Tutor: Embeddable web-based program
visualization for CS education. In Proceedings SIGCSE ’13, New York,
USA, 2013. ACM.

[7] Philip Guo. Python is now the most popular introductory teaching
language at top us universities. BLOG@ CACM, July, 2014.

[8] Poul Henriksen and Michael Kölling. Greenfoot: combining object
visualisation with interaction. In Proceedings OOPSLA’04, pages 73–82.
ACM, 2004.

[9] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
virtual machine specification. Pearson Education, 2014.

[10] Thomas J McCabe. A complexity measure. Software Engineering, IEEE
Transactions on, (4):308–320, 1976.

[11] Manfred Meyer. The PrimeGame reloaded: Finding the right balance
between cooperation and competition in undergraduate computer science
classes. In Proceedings EDULEARN11. IATED, 2011.

[12] Manfred Meyer and Jens Fendler. The PrimeGame: Combining
skills in undergraduate computer science programmes. In Proceedings
INTED’10. IATED, 2010.

[13] Mathieu Muratet, Patrice Torguet, Jean-Pierre Jessel, and Fabienne
Viallet. Towards a serious game to help students learn computer
programming. International Journal of Computer Games Technology,
2009:3, 2009.

[14] Mathew Nelson and Flemming N Larsen. Robocode. IBM Advanced
Technologies, 2001.

[15] Yolanda Rankin, Amy Gooch, and Bruce Gooch. The impact of game
design on students’ interest in cs. In Proceedings GDCSE’08, pages
31–35. ACM, 2008.

[16] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

[17] Ian Utting, Stephen Cooper, Michael Kölling, John Maloney, and
Mitchel Resnick. Alice, greenfoot, and scratch–a discussion. ACM
Transactions on Computing Education (TOCE), 10(4):17, 2010.

[18] Alf Inge Wang and Bian Wu. An application of a game development
framework in higher education. International Journal of Computer
Games Technology, 2009:6, 2009.


