
A Web-Based Environment to Teach Introductory
Programming based on a Bi-Directional Layered Notional

Machine

Li Sui
Massey University Palmerston

North, New Zealand
leesui0207@gmail.com

Jens Dietrich
Massey University Palmerston

North, New Zealand
j.b.dietrich@massey.ac.nz

Eva Heinrich
Massey University Palmerston

North, New Zealand
e.heinrich@massey.ac.nz

Manfred Meyer
Westphalian University of

Applied Sciences, Bocholt,Germany
manfred.meyer@w-hs.de

ABSTRACT
We present a novel browser-based environment to teach in-
troductory programming. This platform combines gamifica-
tion with peer-to-peer interaction. Students write programs
(bots) that play simple board games on their behalf, and can
exercise these bots by playing against the bots developed by
their peers. The tool is web-based in order to facilitate low-
cost delivery and collaboration.

The user interface provides unique tracing features based
on a bi-directional layered notional machine. This creates
some interesting technical challenges due to the limitations
of traditional tracing technologies such as debugger inter-
faces and continuations. We discuss how we solved these
problems, and present several experiments used to validate
the scalability of our approach.

The proof-of-concept implementation is based on the So-
GaCo platform and the PrimeGame, using Java as the pro-
gramming language.

1. INTRODUCTION
Improving the performance of students in introductory

programming courses remains a challenging problem. While
novel educational platforms alone will not be able to solve
this problem, there are success stories such as GreenFoot [8]
and Scratch [13] that have clearly demonstrated how educa-
tional outcomes can be improved by using the right tools.

To be effective, any educational platform must provide
attractive features that engage and encourage students, and
relate to how they interact with technology and their peers
outside the classroom. Animation and gamification are widely
seen to be such features, and many tools use them.

In our previous work, we have suggested that the integra-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

tion of social networking is such a feature as well [4]. In
particular, social networking can be used to allow students
to collaborate and compete in tournament-like settings when
combined with gamification. The engineering of such a plat-
form has to overcome several challenges with respect to se-
curity and scalability. On the other hand, such a distributed
system approach facilitates the delivery of the platform as
a web-based service, mimicking the design and mode of de-
livery of very successful systems like Google Docs. For the
educator, this has the added advantage of low total cost of
ownership, in particular freeing him or her from on-site sys-
tem installations. Furthermore, an approach that is based
on server-based services has the inherent advantage that it
can be easily adapted to different clients, including browsers
on traditional personal computers and custom apps for the
various mobile platforms. Our previous work on SoGaCo [4]1

has demonstrated how such a platform can be implemented,
and how security and scalability challenges can be addressed.

The basic principle of SoGaCo is that students create bots
that play board games on their behalf. Bots are edited in
browser-based editors, and submitted to a central server for
storage and execution. Bots can be easily shared via unique
URLs, and students can use this feature to play against
other bots, including bots shared by peers. The SoGaCo
framework has several variation points that facilitate dif-
ferent games, programming languages and authentication
methods.

The focus on board games facilitates a user interface de-
sign centred around a simple notional machine [5, 6]. This
machine is based on the visualisation and the terminology
of the board game used, displaying game states after each
turn computed by a bot. The expectation is that this will
support the student in understanding the semantics of the
program developed. However, using only a visualisation of
the board game is not sufficient as students also need to
understand the program states that lead to game states.

The contribution of this paper is a novel type of notional
machine developed to address this issue. The rest of this pa-
per is organised as follows: we review related work in section
2, followed by a discussion of the notional machine in sec-
tion 3. We then summarise the results of some experiments

1http://sogaco.massey.ac.nz/

used to confirm the technical feasibility of our approach in
section 4. This is followed by a brief conclusion section.

2. BACKGROUND AND RELATED WORK
In this section, we discuss some related work on notional

machines, reverse debugging and the PrimeGame which we
use for our proof-of-concept implementation.

The concept of a notional machine was introduced by du
Boulay as “the general properties of the machine that one is
learning to control” as one learns programming [5]. He sug-
gested that such a notional machine should be simple, useful
and observable. An overview of current work on notional
machines is given by Sorva [17]. According to Sorva [17], a
notional machine: (1) is an idealized abstraction of computer
hardware and other aspects of the runtime environment of
programs; (2) serves the purpose of understanding what hap-
pens during program execution; (3) is associated with one
or more programming paradigms or languages, and possi-
bly with a particular programming environment; (4) enables
the semantics of program code written in those paradigms
or languages (or subsets thereof) to be described; (5) gives
a particular perspective to the execution of programs; and
correctly reflects what programs do when executed.

Several studies, e.g. by Chen et al. [3], have shown that
many of the problems students have in introductory pro-
gramming courses stem from misconceptions of the notional
machine, especially of those aspects not directly apparent
from the program code but hidden within the execution-
time world of the notional machine.

Smith and Webb [16] relate students’ difficulties in de-
veloping and debugging their programs to an inadequate
mental model of how the computer works when executing
their programs. This also limits the use of program trac-
ing, a key programming skill that novice programmers often
struggle with as shown in a multi-national study byLister et
al. [10]. A study by Fitzgerald et al. [7] showed that stu-
dents often struggle in selecting the right “moving elements”
to keep track of in tracing which results in information over-
load and failure to understand program execution. Notional
machines have also been looked at from a constructivism
perspective, e.g. by Ben-Ari and Yeshno [1], claiming that
novice programmers need to form an understanding of the
computer matching some normative model, possibly a no-
tional machine operating close to the level of abstraction
that the learners focus on.

The idea of navigating through the program execution
trace not only in chronological order as the program is be-
ing executed but also back and forth as necessary to iden-
tify and investigate critical parts of the program has been
discussed as reverse or historical debugging. Lessa and Ja-
yaraman [9] describe JIVE, a visual debugger for Java built
on the Eclipse IDE that depicts both the runtime state and
call history of a program in a visual manner and offers for-
ward and“reverse stepping”with the ability to jump directly
back to any previous point in the execution history in order
to observe the object diagram at that point, to better un-
derstand program execution and narrow down the cause of
program errors. Reverse debugging has also found its way
into the GNU Project Debugger2 and the OCaml debugger3

2http://www.gnu.org/software/gdb/
3http://caml.inria.fr/pub/docs/manual-ocaml-
4.00/manual030.html

developed at INRIA for the programming language Caml
offering step and backstep commands. Microsoft’s Intelli-
Trace also offers reverse debugging functionality as part of
the VisualStudio IDE under the term historical debugging.4

The PrimeGame is a mathematical programming game
which has been used in undergraduate computer science
teaching since 2003 [12]. Due to its very few and simple
rules it can be easily understood and played. However,
the complex search space asks for developing some strategy
rather than being able to evaluate all possible moves to the
end. Beside being used as a vehicle to motivate and activate
programming novices, it has also been used in second-year
courses to discuss agent models and communication proto-
cols when student groups were allowed submitting a set of
(cooperating) bots instead of individual bots competing with
each other [11].

3. THE NOTIONAL MACHINE
In this section, we describe the unique features of the no-

tional machine we have developed: its layered design, and
the reversibility.

3.1 The Game Play Layer
The system presented here is based on the SoGaCo plat-

form [4]. SoGaCo allows students to develop bots that play
simple board games on behalf of the user against other bots.
This is based on the assumption that students find it easy
to understand the game rules, and develop strategies to play
the game encouraged by the social and gaming features of
the system. While bots are developed on the client, the
compilation and execution happens on the server. This fa-
cilitates collaboration and a low total-cost-of-ownership de-
livery as a service.

The particular game we chose for the proof-of-concept im-
plementation is the PrimeGame [12]. The PrimeGame has a
particular simple set of rules that can be explained in min-
utes5, and a range of strategies which most students quickly
discover and try to implement – ranging from simple cau-
tious and greedy (play the smallest or the largest number on
board) to more sophisticated strategies (play largest prime
number on board, optimise net gain, look ahead). When
students discover and implement new strategies, they of-
ten must employ additional language features (conditionals,
loops, nested loops and helper functions). This progression
therefore encourages learning and supports comprehension
of the respective programming language features and the
respective algorithmic constructs.

When a bot is developed, the user can test it against other
bots. This includes built-in bots of various complexity, or
bots shared by other users. The turn-based character of the
game facilitates game replay. I.e., the user interface features
a game board with media-player like controls that allows the
user to replay the game. This functionality is widely used

4http://msdn.microsoft.com/en-us/library/mt228143.aspx
5The PrimeGame is a turn-based game played by two play-
ers using a simple board that consists of all natural numbers
from 1 to 100 (or any other maximum number chosen). A
player plays a number that is on the board, and gains this
number as points. For each prime factor of the number
played still on the board, the opponent gains those numbers
as points. Then the number played and its prime factors are
removed from the board, and it is the opponent’s turn. The
player with the highest number of points wins the game.

in electronic board games, and represents a simple, easy to
comprehend notional machine. The model used is the game
board itself, and therefore requires little abstraction, is easily
accessible to all students, and can be used to understand the
impact of certain decisions made in the program.

The board visualisation consists of boxes containing num-
bers, arranged in a 10 × 10 grid. Players are associated
with colours (a “red bot” plays against a “blue bot”), and
these colours are used to display the game state. Exam-
ples of game boards are shown in figure 1. Both games are
unfinished as they contain grey fields indicating that these
numbers have not yet been played. In the game shown in
figure 1 (a) a blue bot uses a simple greedy strategy (select
the largest number on board) against a red bot using a cau-
tious strategy (select the smallest number on board). The
points gained in a move by the blue player are highlighted
with a dark blue background, while the points gained by the
opponent during this very move due to the prime factor rule
are highlighted light red. The respective student owning the
blue bot can easily see that his strategy is not smart as it
will help the opponent to gain many points even when it is
not its turn. On the other hand, in the game shown in fig-
ure 1 (b), the red bot plays the largest prime strategy. This
means that the blue player does not gain any points from
the red player’s moves6. In summary, the game board-based
notional machine enables students to quickly comprehend
the shortcomings and advantages of certain strategies.

A noteworthy feature of this machine is the ability to undo
moves. I.e., the notional machine is reversible. This is intu-
itive and expected by students used to media-player controls
and undo functions in editors. It is also easy to implement
as the game state after each turn is easy to capture, compact
and can be transferred quickly to the client for visualisation.

The shortcoming of this machine is that it only exposes
the game state between turns, and treats the computation
of the actual turns as black box. This becomes problematic
once students try to implement more sophisticated strate-
gies, and start creating complexity they then have problems
to understand. Debugging is required to reveal the code
hidden in the black box.

(a) Greedy (blue) against
cautious (red)

(b) Prime (red) against
cautious (blue)

Figure 1: Board state for games played by bots implement-
ing different strategies

3.2 The Bot Debugging Layer
6Unless the red bot starts the game, in this case the blue
bot will gain 1.

We address this problem by adding a second layer to
the notional machine. To understand the execution of the
program that computes the next move, students can use
debugger-like functionality. This allows students to moni-
tor the execution of their program by inspecting the values
of the different variables currently on the stack. The in-
terface we have developed for this can be seen in figure 2.
A notable features that distinguishes our approach from a
classical debugger UI is that there are no breakpoints where
the execution of the program is stopped. Instead, there is a
forward control that is used to replay the execution starting
at the beginning of a turn. We considered using an alterna-
tive visual notional machine like the one suggested by Berry
and Kölling [2], or a machine based on dynamic UML dia-
grams [15]. However, these visualisations are more suitable
for object-oriented programming. We do not aim at a par-
ticular programming paradigm, and bots developed to play
the PrimeGame are procedural by nature as the problems do
not lend themselves to object-oriented solutions with state-
ful entities.

While creating a simple visual debugger is straight for-
ward, there are complications from integrating this into the
overall web-based architecture, and with the top-level no-
tional machine.

First, there is the problem of directionality. The game
play layer allows students to replay and reverse game play.
This is an important feature as students can use it to un-
derstand how the game state evolved. The reverse button
gives them the change to repeat steps they have problems
comprehending. The availability of the reverse function has
an impact on the debugger API: the debugger must be able
to replay execution starting at each turn.

To achieve this poses challenges, in particular when the
logic is implemented on a shared server with limited re-
sources. While it is possible to devise services that return
the state of execution (i.e., the state of the Java stack and
the associated parts of the heap) for a certain turn in a game
played between two bots, this requires complex versioning
or locking schemes as the bots may change during a debug-
ging session due to the inherently concurrent character of
the platform. Even the use of simple server-based debug-
ging sessions through the Java debugging interface (JDI) or
continuation-style APIs [14] is problematic as this requires
to keep games in shared server memory in long-running ses-
sions and therefore has a negative impact on scalability.

To solve this problem, we developed a debugger that cap-
tures the entire stack and the referenced parts of the heap
during the execution of a game (on the server), serialises
and compresses this information and returns it to the client.
While this comes at a cost - the resources needed to ex-
tract, compress and transmit this information, it minimises
the number of active computations on the server and leads
in general to better server throughput. Some of the experi-
ments discussed in section 4 quantify the overhead.

To extract debug information, we used the byte code in-
strumentation already built-into SoGaCo and discussed in
[4]. The original purpose of this instrumentation was to in-
ject code to monitor user-submitted code to avoid denial of
service attacks by enforcing timeouts and memory quota.
This is achieved by inserting code via byte code instrumen-
tation that generates notifications around invocations and
assignments. An overview of the build and instrumentation

Figure 2: The debugger interface

serverclient

source code bytecode instrumented
bytecode

source code
save
bot

request

java
comp
iler

sogaco
verify/
instru-
ment#########

 #######
 #######
 ######
#########

#########
 #######
 #######
 ######
#########

Figure 3: The bot build and instrumentation process

process is shown in figure 3. Figure 4 depicts how the in-
strumented code is used to capture game state, to encode
this state and return it to the client. This is described in
more detail below.

An additional benefit of transferring the complete execu-
tion state to the client is that this allows us to build a com-
pletely reversible debugger. I.e., the user cannot only resume
debugging from the beginning of a turn, but (s)he can also
step backward within the execution for a particular turn.
There is again an educational benefit here: students can use
undo functionality they are used to in order to repeat steps
of the computation they have problems to understand.

4. VALIDATION
In this section we investigate whether a complete capture

of the execution in order to facilitate reversible game replay
on the client is feasible.

4.1 Benchmarks
There are several constraints to consider: (1) the time

needed to capture and encode state after each state chang-

server

instrumented
bytecode

JSON-
encoded

game state(s)

{##:**}

client

line
no,
stateplay

game
service

exe-
cute

my bot id

other bot id

game-
board

debugger/

play
game

request

encoded
game
states

serverbot A

JSON-
encoded

game state(s)

{##:**}

client

execute instrumented
bytecode of selected bots
generate JSON (inclusive
of code line numbers and

program states)

id bot A

id bot B

game-
board

debugger/

game
play

request

return to user for display
and analysis

bot B

Figure 4: Capturing state during game execution

ing instruction; (2) the server memory required to represent
the state in order to compose the response; (3) the size of the
response that must be transmitted to the client. (2) can be
mitigated by streaming results using technologies like server-
sent events7. However, this comes at the price of keeping
HTTP connections open longer, and we therefore did not
consider this. We note that (3) can be at least partially ad-
dressed by using the transparent (GZIP) compression built
into HTTP, and supported by all mainstream browsers and
server.

The most important factor that will impact (1)-(3) is the
complexity of the bots. Bots that use multiple control struc-
tures, and in particular nested loops, will perform more in-
structions for which states need to be recorded. Also note
that a “deep capture” of the objects on the heap is necessary
after each state-changing instruction, as we must assume
that objects are mutable, and could be changed by execut-
ing any instruction.

7https://html.spec.whatwg.org/multipage/comms.html#
server-sent-events

We use the following three benchmarking bots to take
measurements. The greedy bot is the bot that always picks
the largest number on the board. It is a very simple bot that
does not require the use of conditionals or loops, and is a
typical starting point for new students. The smarter bot is a
bot the maximises the net gain (points gained by self minus
points gained by opponent through the prime factor rule).
The smarter bot beats bots playing the largest prime num-
ber, and requires code that uses multiple control structures
and helper functions. This is usually the most sophisticated
bot students will produce in an introductory programming
course. The black mamba is a bot produced by a teacher
and represents the worst case scenario in terms of complex-
ity. The black mamba uses a sophisticated strategy that
looks ahead and tries to simulate the moves of the oppo-
nent. This requires the exploration of a very large search
space. It is unlikely that students in introductory courses
produce a bot like this. More complex bots are likely to
be rejected by the server due to enforced memory and CPU
quota.

4.2 Encoding Schemes
A critical feature of our system is how state is represented

and encoded. Figure 5 depicts the structure of captured
state. The execution of a game consists of a series of in-
vokations of the move(..) method to compute the next
turn. The method itself performs multiple byte code instruc-
tions. After each instruction that alters state (in particular,
store and invoke instructions), a memory snapshot is cre-
ated via instrumentation. This snapshot includes the stack
and parts of the heap. This includes temporary variables
as well as fields. For reference variables encountered, ref-
erences are traversed up to a certain depths to capture the
relevant part of the heap. This capture depth can be con-
figured, the default value is two. This has the consequence
that the debugger allows users to inspect objects in simple
data structures like lists and maps, but not in nested lists or
lists within maps. We also simplify the object structure by
using a logical “flat” representation for common data struc-
tures. For instances, maps are represented as simple lists of
key-value pairs, and lists ae represented by their elements,
ignoring intermediate objects representing buckets (in hash
maps) or entries (in linked lists) as these details are not
useful for the target audience. Many mainstream IDEs use
a similar approach in their debuggers. While the capture
depth value can be increased, it means that the space re-
quired to capture state increases for games that use “deep”
data structures. We use JSON to serialize the captured state
as this facilitates the interaction with web clients.

We experimented with different encodings and compres-
sion methods.

• baseline encoder (BE). A simple encoder that maps
the entire state up to a certain depth to a JSON (nested)
object.

• custom encoder (CE). A better encoder improved
by a custom representation of lists of numbers as inter-
vals. For example, a consecutive number array [0,1,2,3,4,5]
is represented as an interval [“0-5”].

• dictionary index method (DI). State is recorded
in maps that for each variable associate tuples consist-
ing of a turn number, a line number and an iteration

game

move move move

snapshot snapshot snapshot

this variable
(primitive)

variable
(reference)

field
(primitive)

field
(reference)

this object is not
captured as the
reference is too deep

capture
depth

captured
part of
the heap

each move
corresponds
to the
computation
of a turn

a snapshot
is taken after
each state-
changing
instruction

Figure 5: Structure of captured memory data

count (for loops) with JSON-encoded variable values.
Note that such records are only created if we encounter
instructions that can modify the value or state of the
respective variable.

• edit distance method (ED). This is based on the
idea of using delta compression where a snapshot is
represented by the changes with respect to the previous
snapshot. This compression is only used if variables are
added or removed, which corresponds to code features
like variable declarations, or block exits.

• tree edit distance method (TED). This is similar
to the edit distance method, but also encodes changes
(add, remove and update) in branches of the tree.

4.3 Results
We executed several experiments to validate the encod-

ing strategies described in section 4.2. These experiments
were executed on a MacBook Pro with a 1.3 GHz Intel
Core i5 CPU, 4 GB RAM, OS X version 10.11.2, using a
Java HotSpot� 64-Bit Server VM (build 25.65-b01, mixed
mode). We used the benchmarks described in section 4.1.
We also included a “null scenario” where we executed the
game without capturing state in order to create a baseline
for the runtime.

For each experiment, the respective bot class is instanti-
ated twice, and the bots play against each other. State is
captured only from one bot to simulate a game executed on
the SoGaCo server. We took the following measurements:
(1) the overall execution time of the bot monitored (2) the
size of heap space needed to represent the captured and en-
coded state8 (3) the size of the captured state when exported
to the file system (4) the size of the file compressed using the
popular zip utility. The last measurement is relevant as this
is a good estimate for the network load for server to client
data transfer if the server is configured to use compression.

The respective results are summarised in table 1. The
first row represents the “null scenario”. The results indicate
that the size of the data produced is very sensitive to both
the complexity of the bot monitored and the method used

8For this purpose, we used the SizeOf object size
estimation library(http://mvnrepository.com/artifact/com.
carrotsearch/java-sizeof)

Table 1: Results
encod.
meth.

bot time
(ms)

memory
(kb)

file size
(kb)

compr.
size
(kb)

null
greedy 1 n/a n/a n/a
smarter 7 n/a n/a n/a
mamba 34 n/a n/a n/a

BE
greedy 1 13 16 4
smarter 297 11,264 11,980.8 119
mamba 6,361 148,480 155,852.8 1,945.6

CE
greedy 1 5 8 4
smarter 277 5,120 6,963.2 82
mamba 5,154 113,664 120,115.2 1,740.8

DI
with
CE

greedy 1 3 4 4
smarter 259 63 66 4
mamba 5,970 1,024 2,048 172

ED
with
CE

greedy 1 5 8 4
smarter 260 1,024 1,536 82
mamba 6,385 70,656 74,649.6 2,251.8

TED
greedy 5 11 12 4
smarter 626 1,024 1,228.8 86
mamba 29,946 30,720 32,768 2,150.4

to capture and encode state. However, with sensible choices,
it is possible to encode the entire state and therefore to
support reversible debugging on the client while facilitating
a server architecture that supports high scalability. The
most suitable method is clearly the directory index method.

We also experimented with increasing the capture depth.
For space reasons, we cannot provide full details here. Bots
like greedy are not affected by this. For the black mamba
using the optimal DI encoding method, the compressed file
size changes from 172 kb (capture depth = 2, see table 1),
to 389 kb when setting the capture depth to 3 and stabilises
after this.

5. CONCLUSION
In the previous sections we have focused on the technical

architecture of our platform that, on a conceptional level,
consists of two interrelated notional machines. Students
learning to program build mental models of notional ma-
chines and execute those models, in their mind, to reason
about the system. Sorva [17] discusses the challenges faced
in positioning a mental model and the related notional ma-
chine on the right level of abstraction. Our proposition is
that our two connected notional machines, one at game level,
one at program level, assist with this challenge. Students can
seamlessly switch between levels and freely step forwards
and backwards in either, allowing them to shift focus and
repeat single steps as often as required to form understand-
ing. In future work we need to track how students interact
with our platform and how this relates to the development
of their mental models.

6. REFERENCES
[1] M. Ben-Ari and T. Yeshno. Conceptual models of

software artifacts. Interact. Comput., 18(6):1336–1350,
2006.

[2] M. Berry and M. Kölling. The state of play: A
notional machine for learning programming. In
Proceedings ITICSE’14. ACM, 2014.

[3] C.-L. Chen, S.-Y. Cheng, and J. M.-C. Lin. A study of
misconceptions and missing conceptions of novice java
programmers. In Proceedings of the International
Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS’12), 2012.

[4] J. Dietrich, J. Tandler, L. Sui, and M. Meyer. The
primegame revolutions: A cloud-based collaborative
environment for teaching introductory programming.
In Proceedings ASWEC’15. ACM, 2015.

[5] B. Du Boulay. Some difficulties of learning to
program. Journal of Educational Computing Research,
2(1):57–73, 1986.

[6] B. Du Boulay, T. O’Shea, and J. Monk. The black box
inside the glass box: presenting computing concepts to
novices. International Journal of Man-Machine
Studies, 14(3):237–249, 1981.

[7] S. Fitzgerald, G. Lewandowski, R. McCauley,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: finding, fixing and flailing, a
multi-institutional study of novice debuggers. Comput.
Sci. Educ., 18(2):93–116, 2008.

[8] P. Henriksen and M. Kölling. Greenfoot: combining
object visualisation with interaction. In Proceedings
OOPSLA’04. ACM, 2004.

[9] D. Lessa and B. Jayaraman. Explaining the dynamic
structure and behavior of java programs using a visual
debugger. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education
(SIGCSE). ACM, 2012.

[10] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppäla, B. Simon, and
L. Thomas. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bull.,
36(4):119–150, 2004.

[11] M. Meyer. The PrimeGame reloaded: Finding the
right balance between cooperation and competition in
undergraduate computer science classes. In
Proceedings EDULEARN11. IATED, 2011.

[12] M. Meyer and J. Fendler. The PrimeGame:
Combining skills in undergraduate computer science
programmes. In Proceedings INTED’10. IATED, 2010.

[13] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Commun. of the ACM,
52(11):60–67, 2009.

[14] J. C. Reynolds. The discoveries of continuations. Lisp
and symbolic computation, 6(3-4):233–247, 1993.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Pearson, 2004.

[16] P. A. Smith and G. I. Webb. Reinforcing a generic
computer model for novice programmers. In
Proceedings of the 7th Australian Society for
Computer in Learning in Tertiary Education
Conference (ASCILITE’95), 1995.

[17] J. Sorva. Notional machines and introductory
programming education. ACM Transactions on
Computing Education (TOCE), 13(2):8, 2013.

